16,208 research outputs found

    Measures to eradicate multidrug-resistant organism outbreaks: How much does it cost?

    Get PDF
    This study aimed to assess the economic burden of infection control measures that succeeded in eradicating multidrug-resistant organisms (MDROs) in emerging epidemic contexts in hospital settings. The MEDLINE, EMBASE and Ovid databases were systematically interrogated for original English-language articles detailing costs associated with strict measures to eradicate MDROs published between 1 January 1974 and 2 November 2014. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Overall, 13 original articles were retrieved reporting data on several MDROs, including glycopeptide-resistant enterococci (n = 5), carbapenemase-producing Enterobacteriacae (n = 1), methicillin-resistant Staphylococcus aureus (n = 5), and carbapenem-resistant Acinetobacter baumannii (n = 2). Overall, the cost of strict measures to eradicate MDROs ranged from €285 to €57 532 per positive patient. The major component of these overall costs was related to interruption of new admissions, representing €2466 to €47 093 per positive patient (69% of the overall mean cost; range, 13-100%), followed by mean laboratory costs of €628 to €5849 (24%; range, 3.3-56.7%), staff reinforcement costs of €6204 to €148 381 (22%; range, 3.3-52%), and contact precautions costs of €166 to €10 438 per positive patient (18%; range, 0.7-43.3%). Published data on the economic burden of strict measures to eradicate MDROs are limited, heterogeneous, and weakened by several methodological flaws. Novel economic studies should be performed to assess the financial impact of current policies, and to identify the most cost-effective strategies to eradicate emerging MDROs in healthcare facilities

    Propagation of highly nonlinear signals in a two dimensional network of granular chains

    Get PDF
    We report the first experimental observation of highly nonlinear signals propagating in a two dimensional system composed of granular chains. In this system one of the chains contacts two others to allow splitting and redirecting the solitary-like signal formed in the first chain. The system consists of a double Y-shaped guide in which high- and low-modulus chains of spheres are arranged in various geometries. We observed fast splitting of the initial pulse, rapid chaotization of the signal and sharp bending of the propagating acoustic information. Pulse and energy trapping was also observed in composite systems assembled from hard- and soft-particles in the branches

    Calculation of isotope shifts and relativistic shifts in CI, CII, CIII and CIV

    Full text link
    We present an accurate ab initio method of calculating isotope shifts and relativistic shifts in atomic spectra. We test the method on neutral carbon and three carbon ions. The relativistic shift of carbon lines may allow them to be included in analyses of quasar absorption spectra that seek to measure possible variations in the fine structure constant, alpha, over the lifetime of the Universe. Carbon isotope shifts can be used to measure isotope abundances in gas clouds: isotope abundances are potentially an important source of systematic error in the alpha-variation studies. These abundances are also needed to study nuclear reactions in stars and supernovae, and test models of chemical evolution of the Universe

    Quantum signatures of chaos in the dynamics of a trapped ion

    Get PDF
    We show how a nonlinear chaotic system, the parametrically kicked nonlinear oscillator, may be realised in the dynamics of a trapped, laser-cooled ion, interacting with a sequence of standing wave pulses. Unlike the original optical scheme [G.J.Milburn and C.A.Holmes, Phys. Rev A, 44, p4704, (1991)], the trapped ion enables strongly quantum dynamics with minimal dissipation. This should permit an experimental test of one of the quantum signatures of chaos; irregular collapse and revival dynamics of the average vibrational energy.Comment: 9 pages, 9 Postscript figures, Revtex, submitted to Phys. Rev.

    Ab Initio Liquid Hydrogen Muon Cooling Simulations with ELMS in ICOOL

    Get PDF
    This paper presents new theoretical results on the passage of muons through liquid hydrogen which have been confirmed in a recent experiment. These are used to demonstrate that muon bunches may be compressed by ionisation cooling more effectively than suggested by previous calculations. Muon cooling depends on the differential cross section for energy loss and scattering of muons. We have calculated this cross section for liquid H2 from first principles and atomic data, avoiding traditional assumptions. Thence, 2-D probability maps of energy loss and scattering in mm-scale thicknesses are derived by folding, and stored in a database. Large first-order correlations between energy loss and scattering are found for H2, which are absent in other simulations. This code is named ELMS, Energy Loss & Multiple Scattering. Single particle trajectories may then be tracked by Monte Carlo sampling from this database on a scale of 1 mm or less. This processor has been inserted into the cooling code ICOOL. Significant improvements in 6-D muon cooling are predicted compared with previous predictions based on GEANT. This is examined in various geometries. The large correlation effect is found to have only a small effect on cooling. The experimental scattering observed for liquid H2 in the MUSCAT experiment has recently been reported to be in good agreement with the ELMS prediction, but in poor agreement with GEANT simulation.Comment: 6 pages, 3 figure

    Filling minimality of Finslerian 2-discs

    Full text link
    We prove that every Riemannian metric on the 2-disc such that all its geodesics are minimal, is a minimal filling of its boundary (within the class of fillings homeomorphic to the disc). This improves an earlier result of the author by removing the assumption that the boundary is convex. More generally, we prove this result for Finsler metrics with area defined as the two-dimensional Holmes-Thompson volume. This implies a generalization of Pu's isosystolic inequality to Finsler metrics, both for Holmes-Thompson and Busemann definitions of Finsler area.Comment: 16 pages, v2: improved introduction and formattin

    Schmidt number of pure bi-partite entangled states and methods of its calculation

    Full text link
    An entanglement measure for pure-state continuous-variable bi-partite problem, the Schmidt number, is analytically calculated for one simple model of atom-field scattering.Comment: 3 pages, 1 figure; based on the poster presentation reported on the 11th International Conference on Quantum Optics (ICQO'2006, Minsk, May 26 -- 31, 2006), to be published in special issue of Optics and Spectroscop

    PIRATE: A Remotely-Operable Telescope Facility for Research and Education

    Full text link
    We introduce PIRATE, a new remotely-operable telescope facility for use in research and education, constructed from 'off-the-shelf' hardware, operated by The Open University. We focus on the PIRATE Mark 1 operational phase where PIRATE was equipped with a widely- used 0.35m Schmidt-Cassegrain system (now replaced with a 0.425m corrected Dall Kirkham astrograph). Situated at the Observatori Astronomic de Mallorca, PIRATE is currently used to follow up potential transiting extrasolar planet candidates produced by the SuperWASP North experiment, as well as to hunt for novae in M31 and other nearby galaxies. It is operated by a mixture of commercially available software and proprietary software developed at the Open University. We discuss problems associated with performing precision time series photometry when using a German Equatorial Mount, investigating the overall performance of such 'off-the-shelf' solutions in both research and teaching applications. We conclude that PIRATE is a cost-effective research facility, and also provides exciting prospects for undergraduate astronomy. PIRATE has broken new ground in offering practical astronomy education to distance-learning students in their own homes.Comment: Accepted for publication in PASP. 14 pages, 11 figure

    Evolutionary History and Attenuation of Myxoma Virus on Two Continents

    Get PDF
    The attenuation of myxoma virus (MYXV) following its introduction as a biological control into the European rabbit populations of Australia and Europe is the canonical study of the evolution of virulence. However, the evolutionary genetics of this profound change in host-pathogen relationship is unknown. We describe the genome-scale evolution of MYXV covering a range of virulence grades sampled over 49 years from the parallel Australian and European epidemics, including the high-virulence progenitor strains released in the early 1950s. MYXV evolved rapidly over the sampling period, exhibiting one of the highest nucleotide substitution rates ever reported for a double-stranded DNA virus, and indicative of a relatively high mutation rate and/or a continually changing selective environment. Our comparative sequence data reveal that changes in virulence involved multiple genes, likely losses of gene function due to insertion-deletion events, and no mutations common to specific virulence grades. Hence, despite the similarity in selection pressures there are multiple genetic routes to attain either highly virulent or attenuated phenotypes in MYXV, resulting in convergence for phenotype but not genotype. © 2012 Kerr et al

    The low dimensional dynamical system approach in General Relativity: an example

    Get PDF
    In this paper we explore one of the most important features of the Galerkin method, which is to achieve high accuracy with a relatively modest computational effort, in the dynamics of Robinson-Trautman spacetimes.Comment: 7 pages, 5 figure
    corecore